62 research outputs found

    Ultra-Wide Swath SAR Imaging With Continuous PRF Variation

    Get PDF
    Innovative multi-channel synthetic aperture radar (SAR) concepts enable high-resolution wide-swath imaging, but the antenna length typically restricts the achievable swath width. This limitation can be overcome by a novel technique which is based on a single azimuth channel but operates the system with a continuously varied pulse repetition frequency (PRF) by this allowing in principle for arbitrary wide swaths. This paper introduces the basic principles and discusses design constraints for such a PRF variation. Further, a systematic performance analysis of an L-band reflector antenna system is carried out with focus on the sensitivity versus different input parameters

    Advanced Multi-Channel SAR Imaging - Measured Data Demonstration

    Get PDF
    Synthetic Aperture Radar (SAR) is a well-established technique for remote sensing of the Earth. However, conventional SAR systems relying on only a single transmit and receive aperture are not capable of imaging a wide swath with high spatial resolution. Multi-channel SAR concepts, such as systems based on multiple receive apertures in azimuth, promise to overcome these restrictions, thus enabling high-resolution wide-swath imaging. Analysis revealed that these systems imperatively require sophisticated digital processing of the received signals in order to guarantee full performance independently of the spatial sample distribution imposed by the applied pulse repetition frequency (PRF). A suitable algorithm to cope with these challenges of multi-channel data is given by the “multi-channel reconstruction algorithm”, which demonstrated in comprehensive analysis and system design examples its potential for high perform-ance SAR imaging. In this context, various optimization strategies were investigated and aspects of operating multi-channel systems in burst modes such as ScanSAR or TOPS were discussed. Furthermore, a first proof-of-principle showed the algorithm’s applicability to measured multi-channel X-band data gathered by the German Aerospace Cen-ter’s (DLR) airborne F-SAR system. As a next step in the framework of multi-channel azimuth processing, this paper builds on the results recalled above and continues two paths. Firstly, focus is turned to further optimization of the proc-essing algorithm by investigating the classical Space-Time Adaptive Processing (STAP) applied to SAR. Secondly, attention is turned to the analysis of the measured multi-channel data by elaborating the impact and compensation of channel mismatch and by verifying the derived theory

    Advanced Synthetic Aperture Radar Based on Digital Beamforming and Waveform Diversity

    Get PDF
    This paper introduces innovative SAR system concepts for the acquisition of high resolution radar images with wide swath coverage from spaceborne platforms. The new concepts rely on the combination of advanced multi-channel SAR front-end architectures with novel operational modes. The architectures differ regarding their implementation complexity and it is shown that even a low number of channels is already well suited to significantly improve the imaging performance and to overcome fundamental limitations inherent to classical SAR systems. The more advanced concepts employ a multidimensional encoding of the transmitted waveforms to further improve the performance and to enable a new class of hybrid SAR imaging modes that are well suited to satisfy hitherto incompatible user requirements for frequent monitoring and detailed mapping. Implementation specific issues will be discussed and examples demonstrate the potential of the new techniques for different remote sensing applications

    Ultra Wide Swath Imaging With Multi-Channel SAR Systems

    Get PDF
    Multi-channel radar systems allow for overcoming the inherent limitation of conventional synthetic aperture radar (SAR). An example is the combination of digital beamforming on receive in elevation with multi-aperture SAR signal reconstruction in azimuth which enables high-resolution wide-swath. As a next step, focus is turned to advanced concepts for the imaging of even wider swaths with high azimuth resolution. In this regard, the paper investigates the operation of multi-channel SAR systems in burst modes like ScanSAR or TOPS-SAR and analyses aspects of applying the multi-aperture reconstruction algorithm in combination with burst mode operation. The impact of the digital processing network on the SNR and the azimuth ambiguity-to-signal-ratio in multi-channel burst mode systems are considered and embedded in the design example of a ScanSAR system that enables the imaging of a 400 km wide swath with a geometric resolution of 5

    Performance Investigation on Scan-On-Receive and Adaptive Digital Beam-Forming for High-Resolution Wide-Swath Synthetic Aperture Radar

    Get PDF
    The work investigates the performance of the Smart Multi-Aperture Radar Technique (SMART) Synthetic Aperture Radar (SAR) system for high-resolution wide-swath imaging based on Scan-on-Receive (SCORE) algorithm for receive beam steering. SCORE algorithm works under model mismatch conditions in presence of topographic height. A study on the potentiality of an adaptive approach for receive beam steering based on spatial spectral estimation is presented. The impact of topographic height on SCORE performance in different operational scenarios is examined, with reference to a realistic SAR system. The SCORE performance is compared to that of the adaptive approach by using the Cramèr Rao lower bound analysis

    Advanced Concepts for Ultra-Wide-Swath SAR Imaging

    Get PDF
    This paper reviews advanced multi-channel SAR system concepts for the imaging of ultra-wide swaths with high azimuth resolution. Novel system architectures and operational modes are introduced and compared to each other with regard to their performance

    SAR Signal Reconstruction from Non-Uniform Displaced Phase Centre Sampling

    Get PDF
    The displaced phase centre (DPC) technique will enable a wide swath SAR with high azimuth resolution. In a classic DPC system, the PRF has to be chosen such that the SAR carrier moves just one half of its antenna length between subsequent radar pulses. Any deviation from this PRF will result in a nonuniform sampling of the synthetic aperture. This paper shows that an unambiguous reconstruction of the SAR signal is also possible in case of such a non-optimum PRF. For this, an innovative reconstruction algorithm is derived, which enables a recovery of the unambiguous Doppler spectrum also in case of a non-uniform sampling of the synthetic aperture. This algorithm will also have a great potential for multistatic satellite constellations as well as the dual receive antennas in Radarsat II and TerraSAR-X

    Digital Beamforming and Traffic Monitoring Using the new FSAR System of DLR

    Get PDF
    In November 2006 the first X-band test flight of DLR’s new FSAR system has been performed successfully and in February 2007 the first flight campaign has been conducted for acquiring experimental multi-channel data of controlled ground moving targets. In the paper the performed experiments and the used setup of the FSAR X-band section are described and preliminary results in the field of ground moving target indication and digital beamforming are presented

    Tribocorrosion behavior of β-type Ti-Nb-Ga alloys in a physiological solution

    Get PDF
    Tribo-electrochemical behavior in physiological solution of two β-type (100-x)(Ti-45Nb)-xGa (x = 4, 8 wt%) alloys, alongside β-Ti-45Nb and medical grade Ti-6Al-4V ELI, was investigated. Microstructure and mechanical behavior were evaluated by X-ray diffraction, microhardness and ultrasonic method. Tribocorrosion tests (open circuit potential, anodic potentiostatic tests) were performed using a reciprocating pin-on-disk tribometer under constant load. Degradation mechanisms are similar for the alloys: plastic deformation, delamination, abrasive and adhesive wear. Among the β-Ti-Nb alloys, an improved wear resistance with lower damage was remarked for β-92(Ti-45Nb)-8Ga alloy, attributed to increased microhardness. Content of Ga3+ ions released in the test solutions were found to be in very low amounts (few ppb). Addition of Ga to Ti-45Nb resulted in improved corrosion resistance under mechanical loading
    • …
    corecore